Addressing Childhood Malnutrition: Can We Measure Body Composition?

Susan B. Roberts, PhD
Director, Energy Metabolism Laboratory
Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University
Professor of Nutrition, Tufts University
Professor of Psychiatry & Scientific Staff Member in Pediatrics, Tufts Medical School
The Challenge: Differences Between Treatments Will Be *Small*

- Example: malnourished infant weighing 5.0 kg on admission
- Gains 15% weight in 8 weeks = 750 grams
- Diet A causes weight gain 30% fat, 70% lean
 \[\Delta\text{lean} \, 525 \, g = 9.3 \, g/d\]
- Diet B causes weight gain 40% fat, 60% lean
 \[\Delta\text{lean} \, 450 \, g = 8.0 \, g/d\]
How can we measure body composition?

- **Gold standard imaging – DXA**
 - Little bias, but expensive, requires electricity, need to be motionless for scanning

- **2-compartment models**
 - eg air displacement plethysmograph, body water
 - 2-C methods only as good as their assumptions!
 - ADP relies on fixed density of fat and lean tissue
 - TBW relies on fixed hydration
How can we measure body composition?

- Gold standard imaging – DXA
- 2-compartment models e.g. air displacement plethysmograph, body water
- Simple derivative methods e.g. bioelectrical impedance

Simple field technique

Poor accuracy (relative to ADP (±200 g lean tissue))

May be suitable for x-sectional, not for changes over time
What Else Is There?

- Basic techniques – MUAC, skinfolds
- Functional tests (e.g. strength)
- Coming next – creatine dilution?
- Isotope dilution techniques…

Sensitive to field errors and differences across assessors

Potential to combine methods to estimate muscle (Jaswant & Nitish 2014)

![Graph showing the relationship between MRI muscle mass and creatine dilution method muscle mass.](image)